Online supplemental material

Supplementary methods

Isolated-perfused rat lung model

The isolated lung preparation has been described in detail previously (1-3). Briefly, the lungs and heart of anesthetized rats were removed en bloc. The pulmonary artery and left atrium were catheterized and perfused continuously with a solution of 3% bovine serum albumin (BSA) in buffered physiological salt solution (135.5 mM Na⁺, 119.1 Cl⁻, 25 mM HCO_3^- , 4.1mM K⁺, 2.8 mM Mg⁺, 2.5 mM Ca⁺², 0.8 mM SO₄⁻², 8.3 mM glucose). Trace amounts of FITC-albumin was also added to the perfusate. The recirculating volume of the constant pressure perfusion system was 90 ml; arterial and venous pressures were set at 12 and 0 cm H₂O respectively. The vascular pressures were recorded every 10 seconds with a multichannel recorder (Cyber Sense Inc. Nicholasville, KY). The lungs were immersed in a "pleural" bath (100 ml) filled with the same BSA solution. The entire system was maintained at 37 °C in a water bath. Perfusate pH was maintained at 7.40 by bubbling with a gas mixture of 95%O₂/5%CO₂. The lungs were then instilled via the tracheal cannula in two sequential phases with a total of 5 ml volume of the BSA solution containing 0.1mg/ml EBD-albumin, 0.02 µCi/ml of ²²Na⁺ and 0.12 µCi/ml of ³Hmannitol. Samples were taken from the instillate, perfusate, and bath solutions after an equilibration time of 10 minutes from the instillation and again 60 minutes later. To ensure a homogenous sampling of the instillate, a volume of 2 ml was aspirated and reintroduced into the airspaces three times before removing each sample. All samples were centrifuged at 3000 g for 10 minutes. Absorbance analysis of the supernatant or EBD albumin was performed at 620 nm in a Hitachi model U2000 spectrometer (Hitachi,

San Jose, CA). Analysis of FITC-albumin (excitation 487 nm and emission 520 nm) was performed in a Perkin-Elmer fluorometer (model LS-3B, Perkin-Elmer, Oakbrook, IL). Scintillation counts for ²²Na⁺ and ³H-mannitol were measured in a Beckman beta counter (model LS 6500,Beckman Instruments Inc., Fullerton, CA).

To assess whether isoproterenol can prevent the hypercapnia-induced decrease in AFR, isolated rat lungs were first perfused for 1 h with 40 mmHg CO₂ (pH_e 7.4) in the absence and subsequently in the presence of isoproterenol (1 μ M, 1 h) after which perfusion was changed to 60 mmHg CO₂ (pH_e 7.2) and AFR was measured. To determine whether the cAMP analog, 8Br-cAMP can ameliorate the hypercapnia-induced inhibition of AFR, isolated rat lungs were first perfused for 1 h with 40 mmHg CO₂ (pH_e 7.4) in the absence and subsequently in the presence of 8Br-cAMP (100 μ M, 1 h) after which perfusion was changed to 60 mmHg CO₂ (pH_e 7.2) and AFR was measured. To assess whether isoproterenol can overcome the hypercapnia-induced decrease in AFR isolated rat lungs were first perfused for 1 h with 40 mmHg CO₂ (pH_e 7.4) in the absence isoproterenol can overcome the hypercapnia-induced decrease in AFR isolated rat lungs were first perfused for 1 h with 40 mmHg CO₂ (pH_e 7.4) after which perfusion was changed to 60 mmHg CO₂ (pH_e 7.2) for an additional hour in the absence and subsequently for 1 h in the presence of isoproterenol (1 μ M) and AFR was measured.

Hematoxylin and eosin (HE) staining

Lung tissues were rinsed in ice-cold PBS and fixed in 4% paraformaldehyde overnight. Lungs were embedded in paraffin, and cut into 4 μ m lung tissue sections, which were placed on glass slides. Slides were deparaffinized in xylene for 5 min (3 times) and then rehydrated in 100%, 95%, 70% ethanol and PBS. Hematoxylin and eosin (H&E) staining was performed. Briefly, slides were stained in hematoxylin for 3 min, rinsed in tap water, dipped in acid-alcohol 8–12 times, and finally rinsed in tap water. Next, slides were stained with eosin for 30 s and then dehydrated with 95% ethanol, 100% ethanol, and xylene. Images were observed with a Olympus Vanox-s equipped with an Olympus Japan 138132 objective and were captured using a Nikon Digital Camera System.

Determination of reactive oxygen species

Intracellular ROS generation was assessed using 2',7'-dichlorofluorescein diacetate (DCFH-DA; Molecular Probes, Eugene, OR) as previously described (4). Data were normalized to values obtained from normocapnic controls. Cells exposed to hypoxia (1.5 % O₂) were used as a positive control. Real-time determination of ROS was assessed using a roGFP expressed in ATII cells, as previously described (5, 6). The roGFP was expressed in ATII cells using modified pEFGP-N1 as expression vector and Lipofectin as transfection reagent. After 24 h of incubation at 37 °C in culture medium, the cells were washed twice with Hank's balanced salt solution buffer. Cell images were obtained with a multi-mode inverted microscope (Nikon TE2000, Nikon Instruments Inc, Melville, NY) and a Cascade camera CCD650 controlled by MetaFluor Software (Molecular Devices Corp. Downingtown, PA). During the experiment, the cells were continuously perfused with culture media containing CO₂ of 40 or 120 mmHg and the fluorescence images from excitation at 400 and 484 nm (emission 535 nm) were recorded every 60 s. Oxidant stress was assessed in the cytosol using a non-targeted expression construct, and in the mitochondrial matrix using a roGFP targeted to that compartment with the targeting sequence from cytochrome oxidase subunit IV. The roGFP2 mutant (GFP with mutations C48S, S147C, S65T and Q204C) was used in all studies.

Supplementary Figure 1. CO₂-induced Na,K-ATPase endocytosis is independent of ROS.

(A) Cytosolic ROS were measured in real time as the change in fluorescence intensity of ATII cells expressing a non targeted roGFP and exposed for the indicated times to 40 and 120 mmHg CO₂ (pHe: 7.4). Dithiothreitol (DTT) and *tert-butyl*-hydroperoxide (*t*-H₂O₂) were used as positive controls for reduced and oxidized states, respectively. (B) Mitochondrial ROS were measured as in A in ATII cells expressing a roGFP targeted to the mitochondrial matrix compartment and exposed for the indicated times to 40 and 120 mmHg CO₂ (pHe: 7.4). (C) ATII cells were loaded with 10 M DCFH-DA, exposed for 30 min to 40 or 120 mmHg CO₂ (pHe: 7.4, 21% O₂) or to 40 mmHg CO₂ (pHe: 7.4, 1.5% O₂) as a positive control, and fluorescence was measured in the cell lysates. (mean ± SEM, n=3). (D) ATII cells were exposed to 40 or 120 mmHg CO₂ (pHe: 7.4) for 30 min in the presence of Eukarion 134 (EUK 134). Na,K-ATPase protein abundance was determined as described. Incubation with 100 μ M *t*-H₂O₂ at 40 mmHg (pHe: 7.4) was used as positive control (grey bars). mean ± SEM, n= 5. PM: plasma membrane. WB: Western blot. ** p<0.01.

References

- 1. Rutschman, D.H., Olivera, W., and Sznajder, J.I. 1993. Active transport and passive liquid movement in isolated perfused rat lungs. *J Appl Physiol* 75:1574-1580.
- 2. Saldias, F.J., Azzam, Z.S., Ridge, K.M., Yeldandi, A., Rutschman, D.H., Schraufnagel, D., and Sznajder, J.I. 2001. Alveolar fluid reabsorption is impaired by increased left atrial pressures in rats. *Am J Physiol Lung Cell Mol Physiol* 281:L591-597.
- 3. Myrianthefs, P.M., Briva, A., Lecuona, E., Dumasius, V., Rutschman, D.H., Ridge, K.M., Baltopoulos, G.J., and Sznajder, J.I. 2005. Hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption. *Am J Respir Crit Care Med* 171:1267-1271.
- 4. Dada, L.A., Chandel, N.S., Ridge, K.M., Pedemonte, C., Bertorello, A.M., and Sznajder, J.I. 2003. Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-zeta. *J Clin Invest* 111:1057-1064.
- 5. Dooley, C.T., Dore, T.M., Hanson, G.T., Jackson, W.C., Remington, S.J., and Tsien, R.Y. 2004. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. *J Biol Chem* 279:22284-22293.
- 6. Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y., and Remington, S.J. 2004. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. *J Biol Chem* 279:13044-13053.