Regulation of synaptic connectivity by glia

C Eroglu, BA Barres - Nature, 2010 - nature.com
C Eroglu, BA Barres
Nature, 2010nature.com
The human brain contains more than 100 trillion (1014) synaptic connections, which form all
of its neural circuits. Neuroscientists have long been interested in how this complex synaptic
web is weaved during development and remodelled during learning and disease. Recent
studies have uncovered that glial cells are important regulators of synaptic connectivity.
These cells are far more active than was previously thought and are powerful controllers of
synapse formation, function, plasticity and elimination, both in health and disease …
Abstract
The human brain contains more than 100 trillion (1014) synaptic connections, which form all of its neural circuits. Neuroscientists have long been interested in how this complex synaptic web is weaved during development and remodelled during learning and disease. Recent studies have uncovered that glial cells are important regulators of synaptic connectivity. These cells are far more active than was previously thought and are powerful controllers of synapse formation, function, plasticity and elimination, both in health and disease. Understanding how signalling between glia and neurons regulates synaptic development will offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases.
nature.com