Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury

AG Rabchevsky, I Fugaccia, A Fletcher-Turner… - Journal of …, 1999 - liebertpub.com
AG Rabchevsky, I Fugaccia, A Fletcher-Turner, DA Blades, MP Mattson, SW Scheff
Journal of neurotrauma, 1999liebertpub.com
The rapid increase in basic fibroblast growth factor (bFGF) production following spinal cord
injury (SCI) in rats is thought to serve a role in the cellular processes responsible for the
functional recovery often observed. In this study, bFGF was intrathecally administered
continuously for 1 week beginning 30 min after a moderate (12.5 mm) spinal cord contusion
in adult rats using the New York University impactor device. Osmotic minipumps were
implanted into the lateral ventricle and lumbar thecal sac to deliver bFGF at a rate of 3 μg or …
Abstract
The rapid increase in basic fibroblast growth factor (bFGF) production following spinal cord injury (SCI) in rats is thought to serve a role in the cellular processes responsible for the functional recovery often observed. In this study, bFGF was intrathecally administered continuously for 1 week beginning 30 min after a moderate (12.5 mm) spinal cord contusion in adult rats using the New York University impactor device. Osmotic minipumps were implanted into the lateral ventricle and lumbar thecal sac to deliver bFGF at a rate of 3 μg or 6 μg per day versus control vehicle. Animals were behaviorally tested for 6 weeks using the Basso, Beattie, Bresnahan locomotor rating scale and histologically assessed for both tissue sparing and glial reactivity rostral and caudal to the lesion. Rats treated with bFGF regained coordinated hindlimb movements earlier than controls and demonstrated consistent coordination from 4 to 6 weeks. Vehicle-treated rats showed only modest improvements in hindlimb function. The amount of spared tissue was significantly higher in bFGF-treated rats than in controls. Astrocyte and microglial reactivity was more pronounced in bFGF-treated animals versus controls. In summary, intrathecal infusion of exogenous bFGF following SCI significantly reduces tissue damage and enhances functional recovery. Early pharmacological intervention with bFGF following SCI may serve a neuroprotective role and/or create a proregenerative environment, possibly by modulating the neuroglial response.
Mary Ann Liebert