Review

Abstract

There is an increasing recognition that inflammation plays a critical role in neurodegenerative diseases of the CNS, including Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, and the prototypic neuroinflammatory disease multiple sclerosis (MS). Differential immune responses involving the adaptive versus the innate immune system are observed at various stages of neurodegenerative diseases, and may not only drive disease processes but could serve as therapeutic targets. Ongoing investigations into the specific inflammatory mechanisms that play roles in disease causation and progression have revealed lessons about inflammation-driven neurodegeneration that can be applied to other neurodegenerative diseases. An increasing number of immunotherapeutic strategies that have been successful in MS are now being applied to other neurodegenerative diseases. Some approaches suppress CNS immune mechanisms, while others harness the immune system to clear deleterious products and cells. This Review focuses on the mechanisms by which inflammation, mediated either by the peripheral immune response or by endogenous CNS immune mechanisms, can affect CNS neurodegeneration.

Authors

Tanuja Chitnis, Howard L. Weiner

×

Abstract

Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems.

Authors

Antoine Louveau, Benjamin A. Plog, Salli Antila, Kari Alitalo, Maiken Nedergaard, Jonathan Kipnis

×

Abstract

Microglia are brain-resident myeloid cells that mediate key functions to support the CNS. Microglia express a wide range of receptors that act as molecular sensors, which recognize exogenous or endogenous CNS insults and initiate an immune response. In addition to their classical immune cell function, microglia act as guardians of the brain by promoting phagocytic clearance and providing trophic support to ensure tissue repair and maintain cerebral homeostasis. Conditions associated with loss of homeostasis or tissue changes induce several dynamic microglial processes, including changes of cellular morphology, surface phenotype, secretory mediators, and proliferative responses (referred to as an “activated state”). Activated microglia represent a common pathological feature of several neurodegenerative diseases, including Alzheimer’s disease (AD). Cumulative evidence suggests that microglial inflammatory activity in AD is increased while microglial-mediated clearance mechanisms are compromised. Microglia are perpetually engaged in a mutual interaction with the surrounding environment in CNS; thus, diverse microglial reactions at different disease stages may open new avenues for therapeutic intervention and modification of inflammatory activities. In this Review, the role of microglia in the pathogenesis of AD and the modulation of microglia activity as a therapeutic modality will be discussed.

Authors

Heela Sarlus, Michael T. Heneka

×

Abstract

Oligodendrocytes are glial cells that populate the entire CNS after they have differentiated from oligodendrocyte progenitor cells. From birth onward, oligodendrocytes initiate wrapping of neuronal axons with a multilamellar lipid structure called myelin. Apart from their well-established function in action potential propagation, more recent data indicate that oligodendrocytes are essential for providing metabolic support to neurons. Oligodendrocytes transfer energy metabolites to neurons through cytoplasmic “myelinic” channels and monocarboxylate transporters, which allow for the fast delivery of short-carbon-chain energy metabolites like pyruvate and lactate to neurons. These substrates are metabolized and contribute to ATP synthesis in neurons. This Review will discuss our current understanding of this metabolic supportive function of oligodendrocytes and its potential impact in human neurodegenerative disease and related animal models.

Authors

Thomas Philips, Jeffrey D. Rothstein

×

Abstract

Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.

Authors

Alberto Pugliese

×

Abstract

Microglia are the main resident macrophage population of the CNS and perform numerous functions required for CNS development, homeostasis, immunity, and repair. Many lines of evidence also indicate that dysregulation of microglia contributes to the pathogenesis of neurodegenerative and behavioral diseases. These observations provide a compelling argument to more clearly define the mechanisms that control microglia identity and function in health and disease. In this Review, we present a conceptual framework for how different classes of transcription factors interact to select and activate regulatory elements that control microglia development and their responses to internal and external signals. We then describe functions of specific transcription factors in normal and pathological contexts and conclude with a consideration of open questions to be addressed in the future.

Authors

Inge R. Holtman, Dylan Skola, Christopher K. Glass

×

Abstract

Amyotrophic lateral sclerosis (ALS) is a degenerative disorder that is characterized by loss of motor neurons and shows clinical, pathological, and genetic overlap with frontotemporal dementia (FTD). Activated microglia are a universal feature of ALS/FTD pathology; however, their role in disease pathogenesis remains incompletely understood. The recent discovery that ORF 72 on chromosome 9 (C9orf72), the gene most commonly mutated in ALS/FTD, has an important role in myeloid cells opened the possibility that altered microglial function plays an active role in disease. This Review highlights the contribution of microglia to ALS/FTD pathogenesis, discusses the connection between autoimmunity and ALS/FTD, and explores the possibility that C9orf72 and other ALS/FTD genes may have a “dual effect” on both neuronal and myeloid cell function that could explain a shared propensity for altered systemic immunity and neurodegeneration.

Authors

Deepti Lall, Robert H. Baloh

×

Abstract

Spinal cord injury (SCI) lesions present diverse challenges for repair strategies. Anatomically complete injuries require restoration of neural connectivity across lesions. Anatomically incomplete injuries may benefit from augmentation of spontaneous circuit reorganization. Here, we review SCI cell biology, which varies considerably across three different lesion-related tissue compartments: (a) non-neural lesion core, (b) astrocyte scar border, and (c) surrounding spared but reactive neural tissue. After SCI, axon growth and circuit reorganization are determined by neuron-cell-autonomous mechanisms and by interactions among neurons, glia, and immune and other cells. These interactions are shaped by both the presence and the absence of growth-modulating molecules, which vary markedly in different lesion compartments. The emerging understanding of how SCI cell biology differs across lesion compartments is fundamental to developing rationally targeted repair strategies.

Authors

Timothy M. O’Shea, Joshua E. Burda, Michael V. Sofroniew

×

Abstract

Microglial cells are the resident tissue macrophages of the CNS and are widely recognized for their immune surveillance of the healthy CNS. In addition to this well-accepted function, recent findings point to major roles for microglia in instructing and regulating the proper function of the neuronal networks in the adult CNS, but these cells are also involved in creating neuronal networks by orchestrating construction of the whole network during development. In this Review, we highlight recent findings about the steady-state functions of microglial cells, the factors that are important for physiological microglial function, and how microglia help to maintain tissue homeostasis in the CNS.

Authors

Katrin Kierdorf, Marco Prinz

×

Abstract

Prion diseases are a group of progressive and fatal neurodegenerative disorders characterized by deposition of scrapie prion protein (PrPSc) in the CNS. This deposition is accompanied by neuronal loss, spongiform change, astrogliosis, and conspicuous microglial activation. Here, we argue that microglia play an overall neuroprotective role in prion pathogenesis. Several microglia-related molecules, such as Toll-like receptors (TLRs), the complement system, cytokines, chemokines, inflammatory regulators, and phagocytosis mediators, are involved in prion pathogenesis. However, the molecular mechanisms underlying the microglial response to prion infection are largely unknown. Consequently, we lack a comprehensive understanding of the regulatory network of microglial activation. On the positive side, recent findings suggest that therapeutic strategies modulating microglial activation and function may have merit in prion disease. Moreover, studies on the role of microglia in prion disease could deepen our understanding of neuroinflammation in a broad range of neurodegenerative disorders.

Authors

Adriano Aguzzi, Caihong Zhu

×

No posts were found with this tag.